ИНСТРУКЦИЯ ПО УСТАНОВКЕ, ЭКСПЛУАТАЦИИ И СЕРВИСНОМУ ОБСЛУЖИВАНИЮ

Compact A Стальной водогрейный котел СА 100 / СА 150 / СА 200

СОДЕРЖАНИЕ **ВВЕДЕНИЕ** ВВЕДЕНИЕ 2 КТО ДОЛЖЕН ПРОЧИТАТЬ ЭТУ ИНСТРУКЦИЮ 1.1 1.1 Кто должен прочитать эту инструкцию 2 1.2 Условные обозначения 2 Эту инструкцию должны прочесть: 2 - инженеры по проектированию 1.3 Применяемые стандарты 2 - специалисты по монтажу 1.4 Предупреждения - специалисты по эксплуатации - специалисты по сервисному обслуживанию **УСТАНОВКА** 3 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ 2.1 Доступ к оборудованию 3 2.2 Вентиляция 3 В инструкции использованы следующие символы: 2.3 Дымоход 3 3 2.4 Основание Существенно для правильного функционирования системы. ПРИСОЕДИНЕНИЯ 3 4 Существенно для личной безопасности 3.1 Электрическая схема 4 и защиты окружающей среды. 5 3.1 Гидравлические подключения Опасность поражения электрическим током. СБОРКА КОТЛА 9 4.1 Сборка кожуха 9 4.2 Датчики температуры 9 4.3 Концевой выключатель 9 Опасность ожога 4.4 Защитный термостат 9 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 10 ПРИМЕНЯЕМЫЕ СТАНДАРТЫ 1.3 5.1 Габаритные размеры 10 5.2 Эксплуатационные параметры 10 Изделие проверено по действующим стандартам: 5.3 Характеристики котла 10 FOCT 20548-87 ΓΟCT 12.1.003–83 ΓΟCT 12.2.003–91 ОПИСАНИЕ 11 ΓΟCT 12.2.007-75 6.1 Общее описание 11 и имеет сертификат соответствия РОСС ВЕ.Н001.В00137 6.2 Особенности конструкции 11 Разрешение Госгортехнадзора № РРС 03-6015 ВВОД В ЭКСПЛУАТАЦИЮ 12 1.4 **ПРЕДУПРЕЖДЕНИЯ** 7.1 Заполнение системы 12 7.2 Проверка котла 12 Эта инструкция является составной частью комплекта обору-7.3 Проверка горелки 12 дования и пользователь должен получить ее копию. 7.4 Запуск в работу 12 7.5 Рекомендации 12 Изделие должно устанавливаться и обслуживаться квалифи-7.6 Настройка термостатов 12 цированными специалистами в соответствии с действующими стандартами. ОБСЛУЖИВАНИЕ 8 13 ACV не принимает ответственность за любой ущерб, вызван-8.1 Рекомендации ный последствиями неправильной установки или использова-13 нием компонентов и фитингов, не описанных ACV. 8.2 Обслуживание котла 13 Любые отступления от инструкции в отношении ГОРЕЛОЧНЫЕ УСТРОЙСТВА 9 13 испытаний и проверок могут привести

13

13

15

16

22

N.B.

9.1 Характеристики горелок

ЗАПЧАСТИ

ПАСПОРТ

ГАРАНТИЙНЫЙ ТАЛОН

9.2 Монтаж горелок

10

к травмам или загрязнению окружающей

ACV оставляет за собой право изменять технические харак-

теристики и составные части данного продукта без предвари-

среды.

тельного уведомления.

2 **УСТАНОВКА**

2.1 ДОСТУП К ОБОРУДОВАНИЮ

Помещение котельной должно быть достаточно просторным для обеспечения доступа к котлу. Следующие минимальные расстояния (мм) вокруг котла рекомендуются к соблюдению:

- спереди 1000 500 – с боков 500 - сзади 600 - сверху

2.2 ВЕНТИЛЯЦИЯ

Помещение котельной должно быть оборудовано приточной и вытяжной вентиляцией в соответствии с параметрами, приведенными в таблице, и действующими местными стандартами.

2.3 дымоход

Котел присоединяется к дымоходу стальной трубой. Присоединение котла осуществляется, как показано на рис.1. Поперечное сечение дымохода вычисляется по формуле:

$$S = 0,0065 \times Qc / \sqrt{H,}$$

S — поперечное сечение, см²; где

Qc — мощность котла, Ккал/час;

Н — высота дымохода, м

Вентиляция	CA100	CA150	CA200
Приточная* дм²	3	4	6
Мин. приток воздуха м³/час	95	133	224

^{*} Без учета объема вытяжной вентиляции котельной

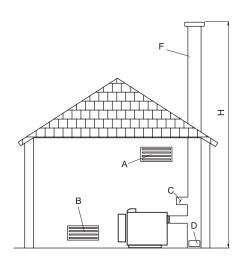


Рис.1: Присоединение котла к дымоходу

- **А.** Вытяжная вентиляция **В.** Приточная вентиляция
- **С.** Регулятор тяги **D.** Отверстие для чистки
- н. Высота дымохода
- **F.** Диаметр дымохода

	1	CA200
	Диаметр трубы	
180	210	270
150	180	230
140	160	210
130	150	200
200	200	200
	150 140 130	180 210 150 180 140 160 130 150

ОСНОВАНИЕ 2.4

Котел должен быть установлен на основание высотой 100 мм, изготовленное из несгораемых материалов.

ЭЛЕКТРИЧЕСКАЯ СХЕМА 3.1

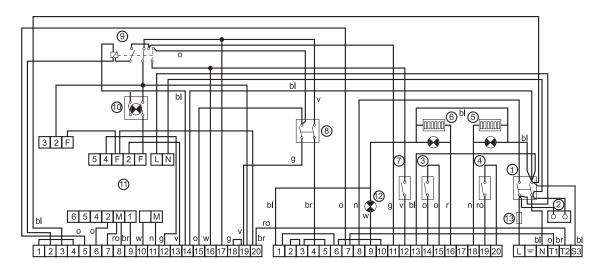


Рис. 2: Электрическая схема

- 1. Главный выключатель
- 2. Электрическая розетка
- 3. Регулирующий термостат 60-90°C 1-й ступени
- 4. Регулирующий термостат 60–90°C 2-й ступени
- 5. Счетчик часов работы и сигнал работы 2-й ступени
- 6. Счетчик часов работы и сигнал работы 1-й ступени
- 7. Предохранительный термостат 103°C
- 8. Переключатель «зима-лето»
- 9. Реле приоритета бойлера
- 10. Выключатель контроллера ACV 1311. Контакты присоединения контроллера ACV 13
- Аварийный сигнал открытия двери
 Плавкий предохранитель 6A

важно:

Необходимо строго соблюдать полярность подключения электропитания.

Электрическая схема предназначена для управления работой двухступенчатой горелкой, циркуляционными насосами и смесителями контура отопления. Электрическое питание подается на шестиполярный штекер котла. Далее через плавкий предохранитель (13) оно подается на главный выключатель (1). Через выключатель закрытия двери (поз. 4, рис. 3.2) питание подается на горелку и циркуляционные насосы. Если дверь камеры сгорания не закрыта, горит аварийный сигнал (12). Горелка подключена через предохранительный термостат 103°C (7). Регулировочные термостаты 1-й ступени (4) и 2-й ступени (5) подключены через клеммную колодку котла на электрическую схему горелки (см. рис. 3.2). Переключатель «зима-лето» (8) управляет работой циркуляционного насоса системы отопления (поз. 1, рис. 3.2). Циркуляционный насос подключен к электрической схеме котла через защитный термостат 45°C (поз. 2, рис. 3.2) задерживающий пуск насоса для быстрого прогрева котла. Для обеспечения приоритетного нагрева емкостного водонагревателя используется реле приоритета бойлера (9), устанавливаемое в специальный цоколь. Реле осуществляет включение циркуляционного насоса водонагревателя (поз. 6, рис. 4.2) и выключение циркуляционного насоса системы отопления (поз. 2, рис. 4.2), при запросе на нагрев от термостата водонагревателя. Котел может работать под управлением контроллера погодного управления АСУ 13, который подключается на контакты (11). Включение контроллера в работу осуществляется с помощью выключателя (10).

- **го.** Розовый
- **Ы.** Синий о. Оранжевый
- **br.** Коричневый
- w. Белый
- **п.** Черный
- **g.** Серый
- **v.** Фиолетовый

ГИДРАВЛИЧЕСКИЕ ПОДКЛЮЧЕНИЯ 3.2

3.2.1 НАСОС РЕЦИРКУЛЯЦИИ

В гидравлической обвязке котлов типа СОМРАСТ необходимо предусмотреть установку насоса рециркуляции (поз. 4, рис. 3.1), который предотвращает локальные переохлаждения котла и обеспечивает температуру теплоносителя в обратной магистрали выше 60°C. Параметры насоса рециркуляции приведены в таблице.

Тип	CA100	CA150	CA200	
Присоединение ∅	1 <mark>»</mark>	1 <mark>.»</mark>	1 <mark>»</mark> 1/4	
	DN 25	DN25	DN32	
Напор, м Производительность, м³/час	0,5 1,5	0,5 2	0,5 3,3	

3.2.2 ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН

Котел должен быть оснащен предохранительным клапаном, настроенным на давление 5 бар. При совместном использовании котла и емкостного водонагревателя, давление срабатывания предохранительного клапана должно соответствовать максимальному рабочему давлению водонагревателя (но не более 5 бар). Клапан присоединяется к отверстию диаметром 1», предназначенному для подключения предохранительных устройств.

3.2.3 СХЕМЫ ГИДРАВЛИЧЕСКИХ ПОДКЛЮЧЕНИЙ

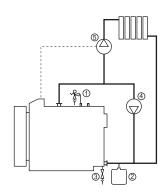


Рис. 3.1: Подключения к контуру отопления без смесителя

- 1. Предохранительный клапан
- 2. Расширительный бак
- 3. Дренаж
- Насос рециркуляции
- 5. Циркуляционный насос системы отопления

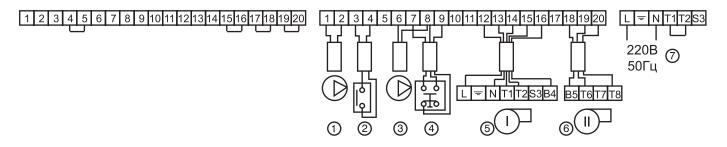
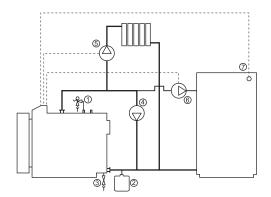
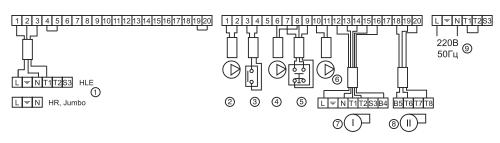



Рис. 3.2: Электрическая схема подключения внешних устройств

- 1. Циркуляционный насос системы отопления
- 2. Защитный термостат 45°C
- Насос рециркуляции
 Выключатель закрытия двери
- **5.** 1-я ступень горелки **6.** 2-я ступень горелки
- 7. Подключение электропитания



- 1. Предохранительный клапан
- Расширительный бак
 Дренаж

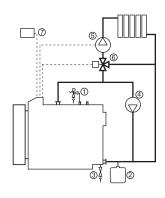
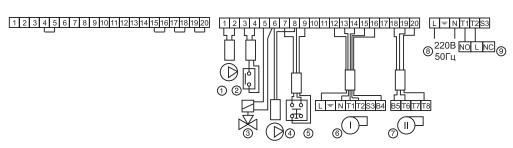

- **4.** Насос рециркуляции **5.** Циркуляционный насос системы отопления
- **6.** Циркуляционный насос водонагревателя **7.** Термостат водонагревателя
- 8. 3-х ходовой смеситель
- 9. Комнатный термостат

Рис. 4.1: Подключение к контуру отопления без смесителя и емкостному водонагревателю

- 1. Штекер емкостного водонагревателя
 2. Циркуляционный насос системы отопления
- 3. Защитный термостат 45°C
- 4. Насос рециркуляции
- 5. Выключатель закрытия двери6. Циркуляционный насос водонагревателя
- 7. 1-я ступень горелки
- 8. 2-я ступень горелки
 9. Подключение электропитания


Рис. 4.2.: Электрическая схема подключения внешних устройств

- 1. Предохранительный клапан

- Расширительный бак
 Дренаж
 Насос рециркуляции
 Циркуляционный насос системы отопления
- 6. 3-х ходовой смеситель
- 7. Комнатный термостат

Рис. 5.1: Подключение к контуру отопления с 3-х ходовым смесителем

- 1. Циркуляционный насос системы отопления 2. Защитный термостат 45°C
- 3. 3-х ходовой смеситель
- **4.** Насос рециркуляции **5.** Выключатель закрытия двери
- **6.** 1-я ступень горелки **7.** 2-я ступень горелки
- Подключение электропитания
 Комнатный термостат

Рис. 5.2: Электрическая схема подключения внешних устройств

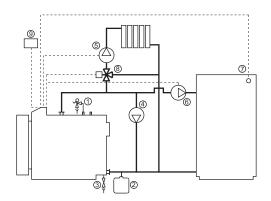
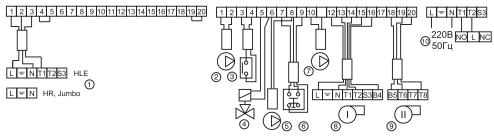
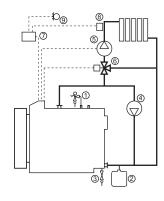



Рис. 6.1: Подключение к контуру отопления с 3-х ходовым


- 1. Предохранительный клапан
- 2. Расширительный бак
- 3. Дренаж
- **4.** Насос рециркуляции **5.** Циркуляционный насос системы отопления
- 6. Циркуляционный насос водонагревателя 7. Термостат водонагревателя
- 8. 3-х ходовой смеситель
- 9. Комнатный термостат

смесителем и емкостному водонагревателю

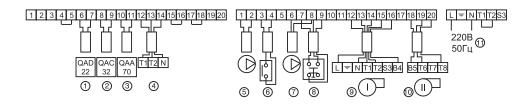

- 1. Штекер емкостного водонагревателя
- 2. Циркуляционный насос системы отопления
- 3. Защитный термостат 45°C
- Электродвигатель 3-х ходового смесителя
- 5. Насос рециркуляции
- 6. Выключатель закрытия двери
- 7. Циркуляционный насос водонагревателя
- **8.** 1-я ступень горелки **9.** 2-я ступень горелки
- Подключение электропитания
 Комнатный термостат

Рис. 6.2: Электрическая схема подключения внешних устройств

- 1. Предохранительный клапан
- 2. Расширительный бак
- Дренаж
- 4. Насос рециркуляции
- 5. Циркуляционный насос системы отопления
- 6. Электродвигатель 3-х ходового смесителя
- **7.** Контроллер ACV 13
- 8. Датчик температуры подающей магистрали
- 9. Датчик наружной температуры

Рис. 7.1: Подключение к контуру отопления с погодным регулированием

- Датчик температуры подающей магистрали
 Датчик наружной температуры

- 3. Комнатное устройство
 4. Электродвигатель 3-х ходового смесителя
- 5. Циркуляционный насос системы отопления
- **6.** Защитный термостат 45°C **7.** Насос рециркуляции
- 8. Выключатель закрытия двери 9. 1-я ступень горелки
- 10. 2-я ступень горелки
- 11. Подключение электропитания

устройств

Рис. 7.2: Электрическая схема подключения внешних

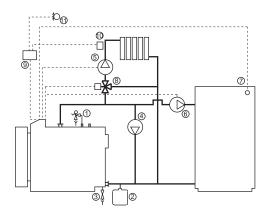


Рис. 8.1: Подключение к контуру отопления с погодным регулированием и емкостному водонагревателю

- 1. Предохранительный клапан
- 2. Расширительный бак
- 3. Дренаж 4. Насос рециркуляции
- Насос рециркуляции
 Циркуляционный насос системы отопления
 Циркуляционный насос водонагревателя
- 7. Термостат водонагревателя
- 8. 3-х ходовой смеситель
- 9. Контроллер ACV 13
- Датчик температуры подающей магистрали
 Датчик наружной температуры

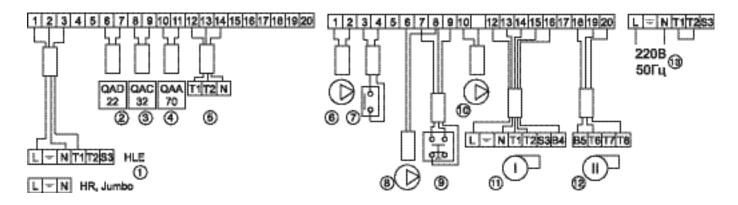


Рис. 8.2: Электрическая схема подключения внешних устройств

- 1. Штекер емкостного водонагревателя
- Датчик температуры подающей магистрали
 Датчик наружной температуры

- Комнатное устройство
 Электродвигатель 3-х ходового смесителя
- 6. Циркуляционный насос системы отопления
- 7. Защитный термостат 45°C 8. Насос рециркуляции

- 9. Выключатель закрытия двери 10. Циркуляционный насос водонагревателя
- 11. 1-я ступень горелки
 12. 2-я ступень горелки
- 13. Подключение электропитания

4 СБОРКА КОТЛА

4.1 СБОРКА КОЖУХА

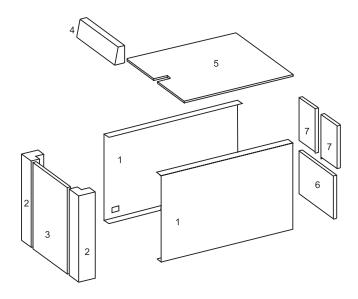


Рис. 9: Кожух котла

Кожух котла необходимо смонтировать на корпусе в соответствии со схемой.

- 1. Обернуть изоляционным материалом толщиной 100 мм тело котла и закрепить теплоизоляцию двумя поставляемыми лентами.
- 2. Смонтировать левую и правую боковые части (1).
- 3. Смонтировать заднюю стенку (6) и элементы (7).
- 4. Установить панель управления (4).
- 5. Смонтировать дверь камеры сгорания.
- 6. Установить термостат минимальной температуры на тело котла.
- **7.** Установить датчики температуры термостатов и термометра в гильзу патрубка подающей магистрали.
- 8. Смонтировать крепление горелки через боковую стенку.
- 9. Установить крышку котла (5).
- 10. Установить кожух двери камеры сгорания (3)
- 11. Установить боковые стенки (2).

4.2 ДАТЧИКИ ТЕМПЕРАТУРЫ

Датчики температуры термостатов и термометра котла вкладываются в гильзу, которая ввинчивается в основание патрубка подающей магистрали котла.

4.3 КОНЦЕВОЙ ВЫКЛЮЧАТЕЛЬ

Котел оборудован концевым выключателем, предотвращающим включение горелки при открытой передней двери. Монтаж концевого выключателя необходимо произвести так, чтобы при закрытой двери выключатель был нажат.

4.4 ЗАЩИТНЫЙ ТЕРМОСТАТ

Котел оборудован защитным термостатом, устанавливаемым на корпус котла слева в нижней его части. Термостат замыкает цепь циркуляционного насоса системы отопления только при достижении теплоносителем температуры 45°С. Это сокращает время на прогрев котла и позволяет избежать образования конденсата.

5 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

5.1 ГАБАРИТНЫЕ РАЗМЕРЫ

Корпус котла поставляется на деревянном поддоне. В камере сгорания уложены панель управления, турбулизаторы и теплоизоляция корпуса. Кожух котла поставляется в отдельной деревянной коробке. После сборки котел имеет следующие габаритные размеры.

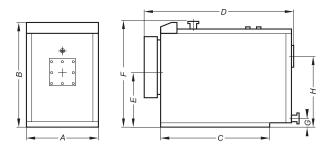


Рис. 10: Габаритные размеры

Габаритные размеры, мм	Α	В	С	D	E	F	G	н
CA 100 CA 150	796 796	920 920	1023 1223	1295 1495	508 508	1000 1000	105 105	680 680
CA 200	796	920	1523	1795	508	1000	105	680

5.2 ЭКСПЛУАТАЦИОННЫЕ ПАРАМЕТРЫ

Максимальное рабочее давление 5 бар Испытательное давление 7,5 бар Максимальная рабочая температура 90°C

5.3 ХАРАКТЕРИСТИКИ КОТЛА

Параметр		CA100	CA150	CA200
Теплопроизводительность	кВт	77–109	134–161	197–260
Номинальная полезная мощность	кВт	70–100	115–140	185-235
Объем теплоносителя	л	102	122	150
Потери в греющем контуре при Dt=20°C	мбар	2–5	5–11	11–31
Давление в камере сгорания	мбар	0,22-0,48	0,68–0,96	1,83-2,5
Присоединение контура отопления	Ø	DN50	DN50	DN65
Присоединение предохранительного клапана	Ø	1 <mark>»</mark>	1 <mark>»</mark>	1 <mark>»</mark>
Дренаж	Ø	1 <mark>»</mark>	1 <mark>»</mark>)	1 <mark>»</mark>
Газоход	ММ	200	200	200
Диаметр камеры сгорания	мм	430	430	430
Объем камеры сгорания	M ³	0,106	0,135	0,179
Содержание СО ₂ в продуктах сгорания (жидкое топливо)	%	13,6–13,9	13,1–13,4	13,2-13,6
Температура продуктов сгорания (жидкое топливо)	°C	125–165	149–173	164-195
Массовый выход продуктов сгорания (жидкое топливо)	кг/ч	199	288	466
Массовый выход продуктов сгорания (газ)	кг/ч	189	254	451
Масса сухая	КГ	315	380	470

Через дробь даны значения для минимальной и максимальной мощности.

ОБЩЕЕ ОПИСАНИЕ 6.1

- Стальной водогрейный котел для отопления.
- Двухходовая камера сгорания с реверсивной топкой.
- Дымогарные трубы оснащены турбулизаторами.
- Предназначен для совместной работы с двух ступенчатыми вентиляторными горелками на газе или жидком топливе.
- Панель управления с главным выключателем, термометром, регулирующими термостатами 1-й и 2-й ступени, предохранительным термостатом, считчиком часов работы ступени, переключателем «зима-лето», контроллером погодного управления ACV13.
- Оборудован защитой от включения горелки при открытой двери камеры сгорания.

ОСОБЕННОСТИ КОНСТРУКЦИИ 6.2

Корпус котла

Корпус котла с омываемой водой камерой сгорания изготовлен из листовой стали ST 37/2. После изготовления корпус испытывается при избыточном давлении 7,5 бар.

Дымогарные трубы

Котел имеет несколько дымогарных труб оснащенных съемными турбулизаторами.

Контур теплоносителя

Теплоноситель из обратной магистрали направляется к передней трубной плите специальным лотком, расположенным внутри контура теплоносителя котла. Нижняя часть контура не содержит дымогарных труб, во избежание возможных отложений накипи и снижения поверхности теплопередачи.

Дверь камеры сгорания

Дверь камеры сгорания может открываться влево или вправо, в зависимости от условий помещения. Теплоизоляция двери осуществляется огнеупорным керамическим материалом, установленным на подложку из минеральной ваты. Герметичность закрытия двери обеспечивается прокладкой из керамического волокна. Дверь закрывается на четырех шпильках М12.

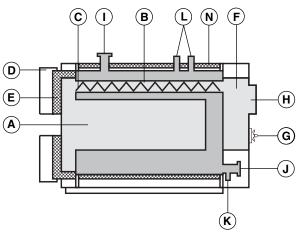


Рис. 11: Устройство котла

- A. Камера сгорания
- В. Дымогарные трубы
- С. Турбулизаторы
- Дверь камеры сгорания
- Е. Теплоизоляция двери
- **F.** Каминная часть
- **G.** Отверстие для чистки
- Н. Присоединение дымохода
- І. Присоединение подающей линии **J.** Присоединение обратной линии
- К. Дренажное отверстие
- L. Присоединение предохранительных устройств N. Теплоизоляция из минеральной ваты

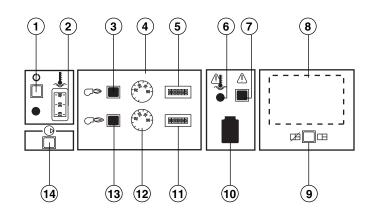


Рис. 12: Панель управления

- 1. Главный выключатель
- 2. Термометр
- 3. Сигнал работы 1-й ступени
 4. Регулировочный термостат 1-й ступени
- 5. Счетчик часов работы 1-й ступени (опция) 6. Предохранительный термостат 103°C
- 7. Аварийный сигнал открытой двери камеры сгорания
- 8. Контроллер ACV 13 (опция)
- 9. Выключатель контроллера ACV 13
- Электрическая розетка
 Счетчик часов работы 2-й ступени (опция)
- 12. Регулировочный термостат 2-й ступени
- 13. Сигнал работы 2-й ступени
- 14. Переключатель «зима-лето»

6 ОПИСАНИЕ

7 ВВОД В ЭКСПЛУАТАЦИЮ

Каминная часть

Съемная каминная часть изготовлена из 3 мм стали и прикрепляется к корпусу котла с помощью шести болтов М10. В нижней части расположено отверстие для чистки с крышкой Ø 100 мм.

Кожух

Наружный кожух котла изготовлен из панелей, окрашенных порошковым методом при температуре 220°C, с предварительным обезжириванием и фосфотацией.

Теплоизоляция

Котел имеет два слоя теплоизоляции:

- 100 мм слой стекловаты оборачивается вокруг корпуса котла и закрепляется специальными лентами.
- 25 мм слой стекловаты, наклеенный на алюминиевую фольгу, закреплен на панелях кожуха котла.

7.1 ЗАПОЛНЕНИЕ СИСТЕМЫ

- 1. Убедитесь, что все вентили, за исключением дренажного, открыты. Установите 3-х ходовые смесители (если они смонтированы) в среднее положение.
- **2.** Заполните систему, установив в ней давление в соответствии с зависимостью:
- давление (бар) = статическая высота системы (бар) + 0,5 бар.
- 3. Проверьте дренажный кран и линию заполнения системы.

7.2 ПРОВЕРКА КОТЛА

- **1.** Проверьте, что турбулизаторы правильно установлены. Передний конец турбулизатора должен совпадать с плоскостью передней трубной плиты.
- 2. Убедитесь, что дверь камеры сгорания закрывается герметично и уплотнение попадает в соответствующий паз.
- 3. Аккуратно заполните зазор между горелочной трубой и керамической теплоизоляцией двери камеры сгорания с помощью гибкого огнеупорного теплоизоляционного материала.
- **4.** Проверьте, что длина горелочной трубы соответствует рекомендуемой. Если необходимо правильно установите и закрепите горелку.

7.3 ПРОВЕРКА ГОРЕЛКИ

- 1. Проверьте все предохранительные устройства, расширительный бак и термостаты.
- 2. Убедитесь, что циркуляционные насосы работают правильно.
- 3. Откройте вентили системы отопления.
- 4. Запустите горелку.

7.4 ЗАПУСК В РАБОТУ

- **1.** Установите необходимую мощность горелки. Проверьте и настройте параметры сгорания: температуру уходящих газов, CO₂, CO, проведите тест на сажу.
- 2. Проверьте работу предохранительного термостата, регулирующих термостатов, концевого выключателя двери.
- **3.** Проверьте работу предохранительного клапана, приведя его в действие вручную.
- 4. Проверьте вентиляцию котельного помещения, шумность дымохода.
- **5.** Убедитесь, что температура теплоносителя в обратной магистрали не менее 60°C и насос рециркуляции работает правильно
- 6. Убедитесь, что циркуляция теплоносителя через котел достаточна.

7.5 РЕКОМЕНДАЦИИ

- Для предотвращения последующего разрушения теплоизоляции передней двери, рекомендуется оставить котел в работе на 1-й ступени мощности на 24 часа.
- Избегайте понижения температуры теплоносителя в обратной магистрали ниже 60°C.
- Никогда не заполняйте работающий котел теплоносителем с низкой температурой.

7.6 НАСТРОЙКА ТЕРМОСТАТОВ

- Установите термостат 1-й ступени на выбранную вами рабочую температуру.
- Установите термостат 2-й ступени на 10°С меньше, чем первый.

Вода для заполнения системы должен иметь следующие характеристики: общая жесткость 60 мг/л; 7<pH<8; свободный кислород < 0,5 ppm.

8 ОБСЛУЖИВАНИЕ

9 ГОРЕЛОЧНЫЕ УСТРОЙСТВА

8.1 РЕКОМЕНДАЦИИ

ACV рекомендует проводить обслуживание котла не реже одного раза в год. Обслуживание должно выполняться квалифицированным персоналом.

Не сливайте теплоноситель из котла без крайней необходимости. Не оставляйте котел без теплоносителя на длительное время.

8.2 ОБСЛУЖИВАНИЕ КОТЛА

- 1. Отключите электропитание на распределительном щите котельного помещения. Выключите главный выключатель котпа
- 2. Откройте дверь камеры сгорания.
- 3. Выньте турбулизаторы из дымогарных труб и очистите их.
- 4. Прочистите дымогарные трубы.
- 5. Вставьте турбулизаторы обратно.
- 6. Очистите камеру сгорания.
- 7. Снимите крышку прочистного отверстия каминной части.
- **8.** Очистите каминную часть и установите крышку на место, обеспечив герметичность.
- 9. Очистите горелочную трубу горелки и электроды.
- 10. Очистите или замените форсунки (для жидкотопливной горелки).
- 11. Закройте и закрепите дверь камеры сгорания.
- 12. Запустите горелку и проверьте параметры сгорания.

Перед проведением любых сервисных или ремонтных работ отключите электропитание на распределительном щите котельного помещения.

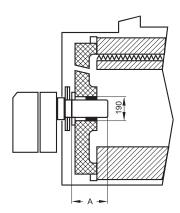


Рис.13: Расположение горелочной трубы в камере сгорания

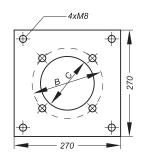


Рис.14: Монтажный фланец горелки

9.1 ХАРАКТЕРИСТИКИ ГОРЕЛОК

Котлы серии COMPACT предназначены для работы с двухступенчатыми горелками на газе или жидком топливе. Требуемые характеристики горелок указаны в таблице.

Параметр	CA150	CA150	CA200
Теплопроизводительность, кВт	77–109	134–161	197–260
Давление в камере сгорания, м.бар	0,22–0,48	0,68–0,96	1,83–2,5
Для горелки на жидком топливе			
Форсунка, гал/час	1,75–45°	3,00–45°	4,5–45°
Давление топливного насоса, бар	10–19,5	10–15	10–19,5

Значение через дробь указано для минимальной и максимальной мощности котла.

Рекомендуется настраивать горелку на содержание продуктов ${\rm CO_2}$ в диапазоне от 12 до 13%.

- 1-я ступень горелки настраивается примерно на 60% теплопроизводительности котла.
- 2-я ступень горелки настраивается примерно на 40% теплопроизводительности котла.

9.2 МОНТАЖ ГОРЕЛКИ

Горелку необходимо установить в двери камеры сгорания в соответствии с параметрами, указанным в таблице.

Котел	А мм (газ)	А мм (ж.т.)	А мм (мазут)
CA 100	275	240	240
CA 150	275	240	240
CA 200	335	335	310

важно:

Необходимо установить теплоизоляцию горелочной трубы в двери камеры сгорания.

Таблица присоединительных размеров горелки

Котел	В, мм	С, мм
CA 100	150	110
CA 150	150	110
CA 200	170	130

